Rokhlin actions and permanence properties

1 Preliminaries

These notes follow mainly the ideas of [Izu04] and [BS16].

1.1 Conventions and Notation. If not stated otherwise, G will denote a **finite** group. By " α : $G \curvearrowright A$ ", we mean that α : $G \to \text{Aut}(A)$ is an action of G on a C*-algebra A and $\alpha(g)$ will be written as α_g for $g \in G$. If A is a C*-algebra, the sequence algebra of A will be denoted by

$$A_{\infty} := \ell^{\infty}(A) / c_0(A).$$

The central sequence algebra of A will be denoted by $A_{\infty} \cap A'$.

1.2 Definition. Let A be a unital C*-algebra. We say that $\alpha : G \cap A$ has the *Rokhlin property* if there exist projections $(e_g)_{g \in G}$ in $A_{\infty} \cap A'$ such that

- (i) $\alpha_q^{\infty}(e_h) = e_{gh}$ for all $g, h \in G$.
- (*ii*) $1_{A_{\infty}} = \sum_{g \in G} e_g$.

We also say that the $(e_g)_{g \in G}$ are Rokhlin projections for the action α .

1.3 Definition. Given an action $\alpha : G \curvearrowright A$, we define the conditional expectation

$$E \colon A \to A^{\alpha} \colon a \mapsto \frac{1}{|G|} \sum_{g \in G} \alpha_g(a).$$

1.4 Lemma. Let A be unital and assume α : $G \curvearrowright A$ has the Rokhlin property. Then, there exists a *-homomorphism

$$\varphi\colon A\to \left(A^{\alpha}\right)_{\infty},$$

such that $\varphi(a) = a$ for all $a \in A^{\alpha}$, i.e. such that the following diagram commutes:

Proof. Define

$$\psi \colon A \to A_{\infty} \colon a \mapsto \sum_{g \in G} \alpha_g(a) e_g.$$

Clearly, ψ is a *-hom. and furthermore $\psi(a) \in (A_{\infty})^{\alpha_{\infty}}$. To finish the proof, note that

$$\phi \colon (A_{\infty})^{\alpha_{\infty}} \to (A^{\alpha})_{\infty} \colon \left[(x_n)_{\mathbb{N}} \right] \mapsto \left[(E(x_n))_{\mathbb{N}} \right]$$

is a well-defined *-isomorphism, which acts as the identity on elements of $(A^{\alpha})_{\infty}$. Therefore,

$$\varphi \colon A \to (A^{\alpha})_{\infty} \colon a \mapsto \phi(\psi(a))$$

is as required.

1.5 Lemma. Assume α : $G \curvearrowright A$ has the Rokhlin property. Then

$$\operatorname{Im}(\operatorname{K}_{i}(\iota) \colon \operatorname{K}_{i}(A^{\alpha}) \to \operatorname{K}_{i}(A))$$
$$= \{ x \in \operatorname{K}_{i}(A) \colon \operatorname{K}_{i}(\alpha_{g})(x) = x, \ \forall g \in G \},\$$

where $i \in \{0, 1\}$.

Proof. We only have to deal with the case i = 0. The case i = 1 can then be handled by looking at $A \otimes \mathcal{O}^{\infty}$, where \mathcal{O}^{∞} is a UCT Kirchberg algebra with $K_*(\mathcal{O}^{\infty}) = 0 \oplus \mathbb{Z}$.

Let φ and ψ be as in Lemma 1.4and fix some projection $p \in A$ such that $\alpha_g(p) \sim_u p$ for all $g \in G$. Let $u_g \in A$ be unitaries such that

$$u_g^* \alpha_g(p) u_g = p \qquad (g \in G).$$

Let $(e_g)_{g\in G}$ be Rokhlin projections in $A_{\infty} \cap A'$. Define the unitary

$$w := \sum_{g \in G} u_g e_g \in A_{\infty}.$$

Then $wpw^* \in (A_{\infty})^{\alpha_{\infty}}$ since

$$wpw^* = \sum_{g,h\in G} u_g e_g p e_h^* u_h^* = \sum_{h\in G} u_h p u_h^* e_h = \sum_{h\in G} \alpha_h(p) e_h$$
$$= \psi(p) \in (A_\infty)^{\alpha_\infty}.$$

It follows that there exists a unitary $u \in A$ with

$$\|\alpha_g(upu^*) - upu^*\| < \frac{1}{4} \qquad (g \in G)$$

Let $a := E(upu^*)$. Then, by the previous calculation

$$\|a - upu^*\| < \frac{1}{4}$$

and $a \in A^{\alpha}$. Note that

$$||a - \varphi(upu^*)|| = ||\varphi(a) - \varphi(upu^*)|| < \frac{1}{4}.$$

Since $\varphi(upu^*)$ is a projection in $(A^{\alpha})_{\infty}$ it follows that there exists a projection $q \in A^{\alpha}$ such that $||q - a|| < \frac{2}{4}$. Then

$$\|q - upu^*\| \le \|q - a\| + \|a - upu^*\|$$

 $< \frac{2}{4} + \frac{1}{4} < 1.$

In particular, $upu^* \sim_u q$ and

$$K_0(\iota)([q]_0) = [q]_0 = [upu^*]_0 = [p]_0$$

2 Sequentially split *-homomorphisms

The following relies on Barlak and Szabó 's article [BS16].

2.1 Definition. Let $\varphi \colon A \to B$ be a *-hom. We say that φ is sequentially split, if there exists a *-hom. $\psi \colon B \to A_{\infty}$ such that the following diagram commutes:

If A and B are unital, we require all maps to be unital.

2.2 Example. By Lemma 1.4, the inclusion $\iota: A^{\alpha} \hookrightarrow A$ is sequentially split, if $\alpha: G \curvearrowright A$ has the Rokhlin property.

2.3 Example. Let A and B be Kirchberg algebras in the UCT class. Then, there exists a sequentially split *-hom. from A to B if and only if $K_*(A)$ is a pure subgroup of $K_*(B)$.

2.4 Lemma. Assume $\varphi \colon A \to B$ is sequentially split and A, B, φ are unital. Then, the following holds:

- (I) $K_i(\varphi) \colon K_i(A) \to K_i(B)$ is injective for $i \in \{0, 1\}$.
- (II) If B has stable rank one, then A has stable rank one.
- (III) If B is AF, then A is AF.

(**IV**) φ_* : T(B) \to T(A) : $\tau \mapsto \tau \circ \varphi$ is surjective.

Proof. Assume $\psi \colon B \to A_{\infty}$ is a unital *-hom. such that the following diagram commutes:

(I) We first prove the case i = 0. Look at the induced diagram on K-theory:

We just have to show that the map $K_0(\iota_A)$ is injective. Assume $K_0(\iota)([p]_0 - [q]_0) = 0$. We may assume that p and q are projections in A and that there exists a unitary $u \in A_\infty$ with $upu^* = q$. Writing $u = [(u_n)_{\mathbb{N}}]$ with u_n unitary for all $n \in \mathbb{N}$. Then for large n we see that $||u_n pu_n^* - q|| < 1$ and hence $p \sim_u q$ in A. So $[p]_0 - [q]_0 = 0$.

The case i = 1 can be moved to the case i = 0 by taking suspensions. Since the Bott isomorphism is natural the following diagram commutes:

$$\begin{array}{c} \mathrm{K}_{0}(SA) \xrightarrow{\mathrm{K}_{0}(S\varphi)} \mathrm{K}_{0}(SB) \\ \downarrow \qquad \qquad \downarrow \\ \mathrm{K}_{1}(A) \xrightarrow{\mathrm{K}_{1}(\varphi)} \mathrm{K}_{1}(B) \end{array}$$

But $S\varphi$ is sequentially split since φ is and therefore we conclude that $K_1(\varphi)$ is injective.

(II) Let $a \in A$ and $\varepsilon > 0$. Find $g \in B$ invertible, such that $\|\varphi(a) - b\| < \varepsilon$. Then, $\|a - \psi(b)\| = \|\psi(\varphi(a)) - \psi(b)\| < \varepsilon$. Since $\psi(b) = [(x_n)_{\mathbb{N}}]$ is invertible in A_{∞} , it follows that x_n is invertible, for large n. As

$$\varepsilon > \|a - \psi(b)\| = \limsup_{n \to \infty} \|a - x_n\|,$$

we get $||a - x_n|| < \varepsilon$ for large $n \in \mathbb{N}$ and so a can be approximated by invertibles in A.

(III) Let $\mathscr{F} \subseteq A$ be a finite set and $\varepsilon > 0$. Since B is AF, we can find a finite dimensional C*-subalgebra $F_0 \subseteq B$ such that $\varphi(\mathscr{F}) \subseteq_{\varepsilon} F_0$. Then, $\iota_A(\mathscr{F}) = \psi(\varphi(\mathscr{F})) \subseteq_{\varepsilon} \psi(F_0)$. With $F := \psi(F_0)$ we have

$$\mathscr{F} \subset_{\varepsilon} F$$
 in A_{∞} .

Since F is finite dimensional, it is weakly semiprojective. Therefore, the inclusion of F into A_{∞} can be lifted to $\ell^{\infty}(A)$:

Let ϕ_n denote the components of ϕ . Let $x \in \mathscr{F}$. Then there exists $x' \in F$ with $||x - x'|| < \varepsilon$. Since $x' = [(\phi_n(x'))_{\mathbb{N}}]$ it follows that

$$\|x - \phi_n(x')\| < \varepsilon$$

for large $n \in \mathbb{N}$. Hence there exists some $n \in \mathbb{N}$ with

$$\mathscr{F} \subseteq_{\varepsilon} \phi_n(F).$$

(**IV**) Let $\tau \in T(A)$ and fix a free ultrafilter $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$. Define $\tau_{\omega} \in T(A_{\infty})$ by

$$\tau_{\omega}\big([(a_n)_{\mathbb{N}}]\big) := \lim_{\omega} \tau(a_n).$$

Then, we have that $\varphi_*(\tau_\omega \circ \psi) = \tau_\omega \circ \psi \circ \varphi = \tau_\omega \circ \iota_A = \tau$.

3 Strongly self-absorbing algebras

3.1 Definition. Let D be a separable unital C*-algebra. We say that D is strongly self-absorbing if there exists an isomorphism $\varphi: D \to D \otimes D$ such that $\varphi \approx_{a.u.} id \otimes 1_D$.

3.2 Remark. An immediate consequence of the above definition is that if D is strongly self-absorbing, then D has an approximate inner flip. Thus D is simple and nuclear.

3.3 Example. An exhausting list of all so far known strongly self-absorbing C*-algebras is given by:

3.4 Theorem. Let A and D be separable C^* -algebras, where D is strongly self-absorbing and A unital. Then, the following are equivalent:

- (i) A is D-stable, i.e. $A \otimes D \cong A$,
- (ii) D embeds unitally into $A_{\infty} \cap A'$,
- (iii) The first factor ebmedding $A \hookrightarrow A \otimes D : a \mapsto a \otimes 1_D$ is sequentially split

Proof. $(i) \Leftrightarrow (ii)$: This is Theorem 2.2. in [TW07]. For $(i) \Leftrightarrow (iii)$ one uses Theorem 2.3 in [TW07] together with the non-trivial fact that all strongly self-absorbing C*-algebras are K₁-injective. See [Win11].

3.5 Corollary. Assume α : $G \curvearrowright A$ has the Rokhlin property. If A is D-stable, where D is a strongly self-absorbing C^{*}-algebra, then also A^{α} is D-stable.

Proof.

Using [BS16, Lemma 2.2] it follows that $\mathrm{id} \otimes 1_D \colon A^{\alpha} \to A^{\alpha} \otimes D$ is sequentially split and therefore A^{α} is *D*-stable by Theorem 3.4.

Bibliography

- [BS16] Selçuk Barlak and Gábor Szabó. Sequentially split *homomorphisms between C*-algebras. Internat. J. Math., 27(13):1650105, 48, 2016.
- [Izu04] Masaki Izumi. Finite group actions on C*-algebras with the Rohlin property. I. Duke Math. J., 122(2):233–280, 2004.
- [TW07] Andrew S. Toms and Wilhelm Winter. Strongly self-absorbing C*algebras. Trans. Amer. Math. Soc., 359(8):3999–4029, 2007.
- [Win11] Wilhelm Winter. Strongly self-absorbing C^* -algebras are \mathscr{Z} -stable. J. Noncommut. Geom., 5(2):253–264, 2011.