On Arveson's extension theorem

André Schemaitat

May 31, 2018

This note should point out, how Arveson's extension theorem for operator systems can be extended to the setting of C*-algebras, with not necessarily unital inclusions. In the following, A^{\sim} will always denote the forced unitization of a C*-algebra A. So, if A is already unital, then $A^{\sim} \cong A \oplus \mathbb{C}$.

The following is known as **Arveson's extension theorem**:

Theorem 1: ([BO08, Theorem 1.6.1]) Let A be a unital C*-algebra and $E \subset A$ be an operator subsystem (in particular, $E \subset A$ unitally). Then every c.p.c. map $\varphi \colon E \to \mathbb{B}(H)$ has a c.p.c. extension $\overline{\varphi}$ to A:

We now try to generalize Theorem 1. First, we need the following Lemma, which is proven in [BO08, Prop. 2.2.1].

Lemma 1: Let $\varphi \colon A \to B$ be a c.p.c. map, where B is unital and A is non-unital. Then φ has a u.c.p. extension φ^{\sim} , given by

$$\varphi^{\sim} \colon A^{\sim} \to B : a + \lambda 1_{A^{\sim}} \mapsto \varphi(a) + \lambda 1_B.$$

Theorem 2: Let A be a C*-algebra an $B \subset A$ be C*-subalgebra. Then every c.p.c. map $\varphi \colon B \to \mathbb{B}(H)$ has a c.p.c. extension $\overline{\varphi}$ to A:

Proof. We treat the two cases of A being unital or not separately. Furthermore, we can assume that B is non-unital since otherwise the extension problem is easily proved, by extending φ to a c.p.c. map $\bar{\varphi}$ on 1_BA1_B and then to A by composing with the obvious conditional expectation $E: A \to 1_BA1_B$. So let us assume from now on that B is non-unital.

(I): Assume A is unital. If $1_A \in B$, we are done by Theorem 1. Otherwise, $1_A \notin B$. In that case $B^{\sim} = B + \mathbb{C}1_A$, where the sum is direct. By Lemma 1 we may extend φ to a u.c.p. map $\varphi^{\sim} \colon B^{\sim} \to \mathbb{B}(H)$, by defining $\varphi^{\sim}(b + \lambda 1_A) := \varphi(b) + \lambda 1_{\mathbb{B}(H)}$. Furthermore, $B^{\sim} \subset A$ unitally. So by Theorem 1 we have the following diagram

Clearly, $\overline{\varphi}^{\sim}$ extends φ .

(II): Assume A is non-unital. Then $B^{\sim} \subset A^{\sim}$ unitally, by $b + \lambda 1_{B^{\sim}} \mapsto b + \lambda 1_{A^{\sim}}$. Again, using Lemma 1, extend φ to u.c.p. map $\varphi^{\sim} \colon B^{\sim} \to \mathbb{B}(H)$. By Theorem 1 we have the following diagram

Clearly, $\overline{\varphi^{\sim}}$ extends $\varphi.$

Bibliography

[BO08] Nathanial P. Brown and Narutaka Ozawa. C*-algebras and finitedimensional approximations, volume 88 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.