On certain strongly self-absorbing C*-algebras

1 UHF algebras

1.1 Definition. We fix an enumeration $(p_i)_{i=1}^{\infty}$ of the prime numbers, including 1. A **supernatural number** is a sequence $\mathbf{n} = (n_i)_{i=1}^{\infty}$ where $n_i \in \mathbb{N} \cup \{\infty\}$. More suggestively we will denote this number by

$$\mathbf{n} = \prod_{i=1}^{\infty} p_i^{n_i}.$$

For \mathbf{n}, \mathbf{m} supernatural numbers, we define

$$\mathbf{n} \mid \mathbf{m} \quad \iff \quad \forall i \in \mathbb{N} : n_i \leq m_i$$

We say \mathbf{n} is of infinite type, if

$$n_i > 0 \qquad \Rightarrow \qquad n_i = \infty.$$

1.2 Definition. Let n be a supernatural number. We then define

$$\mathbb{Q}(\mathbf{n}) := \left\{ \frac{x}{y} : x \in \mathbb{Z}, y \in \mathbb{N}, y \mid \mathbf{n} \right\}.$$

1.3 Lemma. If H is a subgroup of \mathbb{Q} with $1 \in H$, then $H = \mathbb{Q}(\mathbf{n})$ for some supernatural number \mathbf{n} .

1.4 Lemma. Assume $f : \mathbb{Q}(\mathbf{n}) \to \mathbb{Q}(\mathbf{m})$ is a group homomorphism with $f(1) \neq 0$. Then $\mathbf{n} \mid \mathbf{m}$, if \mathbf{n} is of infinite type.

Proof. We may assume that f(1) > 0. Then, there are $k, l \in \mathbb{N}$ with f(l) = k. Now consider the composition

$$g: \mathbb{Q}(nl) \xrightarrow{\cdot l} Q(n) \xrightarrow{f} \mathbb{Q}(m) \xrightarrow{\cdot k^{-1}} \mathbb{Q}(mk)$$

Clearly g(1) = 1 and therefore, $\mathbf{n} \cdot l \mid \mathbf{m} \cdot k$. Since \mathbf{n} is of infinite type, this clearly implies that \mathbf{m} is of infinite type and $\mathbf{n} \mid \mathbf{m}$.

1.5 Definition. A UHF-algebra is a unital countable inductive limit of simple finite dimensional C^{*}-algebras.

1.6 Remark. Any UHF-algebra is simple and has a unique tracial state.

1.7 Theorem. For every supernatural number \mathbf{n} , there exists (up to isomorphism) a unique UHF-algebra, denoted by $M_{\mathbf{n}}$, such that

$$(\mathrm{K}_0(M_{\mathbf{n}}), [1]_0) \cong (\mathbb{Q}(\mathbf{n}), 1).$$

If

$$\mathbf{n} = \prod_{i=1}^{\infty} p_i^{n_i},$$

then one can realize $M_{\mathbf{n}}$ as

$$\lim_{k \to \infty} (M_{r_k}, \varphi_k), \quad with \quad r_k := \prod_{i=1}^k p_i^{\min(n_i, k)}$$

The connecting maps φ_k are given by $\mathrm{id}_{M_{r_k}} \otimes \mathbb{1}_{s_k}$, where $r_k s_k = r_{k+1}$.

1.8 Definition. If **n** is of infinite type, we say that $M_{\mathbf{n}}$ is a UHF-algebra of infinite type. We denote the class of those algebras by UHF^{∞}.

1.9 Remark. If $U \in UHF^{\infty}$, then U is strongly self-absorbing.

1.10 Example. Two frequently used UHF-algebras of infinite type are:

- 1. $M_{2^{\infty}}$, called the CAR-algebra,
- 2. $Q := M_{\mathbf{n}}$, where $\mathbf{n} = \prod_{i=1}^{\infty} p_i^{\infty}$, called the **universal** UHF-algebra.

The algebra Q is uniquely determined by the fact that $K_0(Q) = \mathbb{Q}$ and furthermore, Q contains a unital copy of every finite dimensional matrix algebra M_n .

2 Strongly self-absorbing C*-algebras containing a non-trivial projection

2.1 Lemma. Let A be a unital C^{*}-algebra and let $n \in \mathbb{N}$. Assume

 $n \mid [1_A]$ in V(A),

meaning that there exists some element $x \in V(A)$ with $nx = [1_A]_{V(A)}$. Then M_n embeds unitally into A.

Proof. Write x = [p], where $p \in M_k(A)$ is a projection. Then, after identifying $M_{kn}(A) \cong M_k(A) \otimes M_n$ it follows that there is a partial isometry $v \in M_k(A) \otimes M_n$ such that

$$vv^* = p \otimes 1_n, \qquad v^*v = \operatorname{diag}(1_A, 0, \dots, 0) \otimes e_{11}.$$

Let us abbreviate $v^*v = 1_A \otimes e_{11}$ in the following. We define a *-homomorphism

$$\psi: M_n \to M_k(A) \otimes M_n: x \mapsto v^*(p \otimes x)v.$$

Indeed, ψ is multiplicative since

$$\psi(x)\psi(y) = v^*(p \otimes x)vv^*(p \otimes y)v$$

= $v^*(p \otimes x)(p \otimes 1_n)(p \otimes y)v$
= $v^*(p \otimes xy)v = \psi(xy).$

Furthermore, the image of ψ lands in the corner

$$(1_A \otimes e_{11})(M_k(A) \otimes M_n)(1_A \otimes e_{11}) \cong A.$$

and $\psi(1_n)$ is mapped to the identity of A under this identification.

2.2 Theorem. [DRr09, Prop. 2.7] Let D be a strongly self-absorbing quasidiagonal C^{*}-algebra containing a non-trivial projection. Assume furthermore, that $K_0(D)$ is torsion-free. Then, there exists some $U \in UHF^{\infty}$ such that

$$(K_0(D), [1_D]_0) \cong (K_0(U), [1_U]_0)$$

and $D \otimes U \cong D$.

Proof. Since D is quasidiagonal, $D \otimes Q \cong Q$ and D embeds unitally into Q. Let $\tau : D \to \mathbb{C}$ be the composition making the following diagram commute:

We consider $\tau_* : \mathrm{K}_0(D) \to \mathbb{Q}$ and let $H := \mathrm{Ker}(\tau_*)$. This gives a short exact sequence

$$0 \to H \to \mathrm{K}_0(D) \to \mathrm{Im}(\tau_*) \to 0.$$

Since \mathbb{Q} is torsion-free the functor $- \otimes_{\mathbb{Z}} \mathbb{Q}$ is exact. This produces another short exact sequence:

$$0 \to H \otimes \mathbb{Q} \to \mathrm{K}_0(D) \otimes \mathbb{Q} \xrightarrow{\phi} \mathrm{Im}(\tau_*) \otimes \mathbb{Q} \to 0, \qquad (*)$$

where $\phi = \tau_* \otimes \mathrm{id}_{\mathbb{Q}}$. Applying the Künneth theorem to Q and D it follows that

$$\mathrm{K}_0(D) \otimes \mathbb{Q} \cong \mathrm{K}_0(D \otimes Q) \cong \mathrm{K}_0(Q) \cong \mathbb{Q}.$$

Since $\operatorname{Im}(\tau_*)$ is a subgroup of \mathbb{Q} containing 1, it follows that ϕ is (after identifications) a non-trivial group homomorphism from \mathbb{Q} to \mathbb{Q} . Therefore, ϕ is an isomorphism. By exactness of (*) we get that

$$H\otimes \mathbb{Q}=0.$$

It follows that H must be a torsion group and, as subgroup of $K_0(D)$, trivial. Then, $\tau_* : K_0(D) \to \text{Im}(\tau_*)$ is a group isomorphism. By Lemma 1.3, it follows that

$$\operatorname{Im}(\tau_*) \cong \mathbb{Q}(\mathbf{n}),$$

where **n** is a supernatural number of infinite type. Since D contains a nontrivial projection, D contains projections of arbitrary small trace. Therefore, $\mathbb{Q}(\mathbf{n}) \neq \mathbb{Z}$ and hence $(\mathrm{K}_0(D), [1_D]_0) \cong (\mathrm{K}_0(U), [1_U]_0)$ for some $U \in \mathrm{UHF}^\infty$. It remains to show that U embeds unitally into D. It is sufficient to show that M_k embeds unitally into D, whenever $k \mid \mathbf{n}$. Let us fix some k like this. Then $k^{-1} \in \mathbb{Q}(\mathbf{n}) \cong \mathrm{K}_0(D)$. It follows that there exists some $x \in \mathrm{K}_0(D)$ with $kx = [1_D]_0$. Since D is stably finite and \mathcal{Z} -stable, V(D) has cancellation (see [Rr04]) and therefore

$$k \mid [1_D]$$
 in $V(D)$.

By Lemma 2.1, it follows that M_k embeds unitally into D.

2.3 Corollary. Assume D and E are strongly self-absorbing quasidiagonal C^* -algebras which contain both a non-trivial projection and have torsion-free K_0 -group. If there are embeddings

$$\phi: D \hookrightarrow E, \qquad \psi: E \hookrightarrow D$$

then D and E are U-stable for the same $U \in UHF^{\infty}$ and

$$(K_0(D), [1_D]_0) \cong (K_0(U), [1_U]_0) \cong (K_0(E), [1_E]_0).$$

Proof. Combine Theorem 2.2 and Lemma 1.4.

Bibliography

- [DRr09] Marius Dadarlat and Mikael Rø rdam. Strongly self-absorbing C^* -algebras which contain a nontrivial projection. *Münster J. Math.*, 2:35–44, 2009.
 - [Rr04] Mikael Rø rdam. The stable and the real rank of \mathscr{Z} -absorbing C^* -algebras. Internat. J. Math., 15(10):1065–1084, 2004.