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Abstract

I wrote these notes as a guideline for my talk at the kleines seminar in
Münster. The aim is to explain the concept of quasidiagonality for C∗-algebras
and why this property is invariant under homotopy. This remarkable result has
been proven by Voiculescu in [Voi91].

1 Quasicentral approximate units

In this section we will present some preliminaries on quasicentral approximate units.
See [Arv77]. By A,B,C, . . . we will denote C∗-algebras if not stated otherwise.

1.1 Definition. We say that h ∈ A is strictly positive if and only if ϕ(h) > 0 for
every ϕ ∈ S(A), where S(A) denotes the set of states on A.

1.2 Lemma. The following are equivalent for h ∈ A+ with ‖h‖ ≤ 1:

1. h is strictly positive

2. Ah = hAh = A, i.e. the hereditary C∗-algebra generated by h is A

3. {fn(h)}∞n=1 is an approximate unit for A, where

fn(t) =


0 if t ∈ [0, 2−n]

linear if t ∈ [2−n, 2−n+1]

1 if t > 2−n+1

.

Proof. See [Bla06, II.4.2.1] .

1.3 Corollary. If A is separable, then A has a countable approximate unit {un} such
that un+1un = un.

Proof. If {en} is some countable approximate unit for A then the element

h :=
∑
n

2−nen

is strictly positive. Now, we may apply Lemma 1.2 and note that fn+1fn = fn.
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1.4 Definition. Let K be a closed ideal inside A. If {uλ} is an approximate unit for
K we say that {uλ} is quasicentral if

‖uλa− auλ‖ → 0 (a ∈ A).

1.5 Theorem. Let K be a closed ideal in A. Let {eλ} be an approximate unit for K.
Then there exists a quasicentral approximate unit {uµ} for K such that for all µ:

uµ ∈ co({eλ}),

where co denotes the convex hull.

Proof. See Theorem 1 in [Arv77]. The main ingredient is a separation theorem (Hahn-
Banach).

1.6 Corollary. Let K be a separable closed ideal inside A, where A is also assumed to
be separable. Then K has a countable quasicentral approximate unit {un}∞n=1 such that
un+1un = un.

Proof. The proof goes by inductively choosing the un. There are two important remarks:

• If {en}∞n=1 is a countable approximate unit for K, then for all N ∈ N : {en}n≥N
is still an approximate unit for K.

• The un will be convex combinations of the en (which satisfy en+1en = en). To
ensure that un+1un = un, we throw (after having constructed un) away all the ek
which have been used before to build u1, · · · , un. The main tool here is Theorem
1.5.

First, fix some dense countable subsets {k1, k2, · · · } and {a1, a2, · · · } in K resp. A.
Furthermore, since K is separable we can fix a countable approximate unit {en} for
K such that en+1en = en (see Corollary 1.3). The first step is now to choose some
u1 ∈ co({en}∞n=1) with [

‖k1u1 − k1‖ < 2−1,
‖a1u1 − u1a1‖ < 2−1

Having chosen {u1, · · · , un} we construct un+1 in the following way: Pick a large enough
N ∈ N such that

u1, u2, · · · , un ∈ co({e1, e2, · · · , eN−1}).

Then, let un+1 ∈ co({en}∞n=N) such that[
‖kiun+1 − ki‖ < 2−(n+1) for i ≤ n+ 1,
‖aiun+1 − un+1ai‖ < 2−(n+1) for i ≤ n+ 1

One can now check that un+1un = un for all n ∈ N and that {un}∞n=1 is a quasicentral
approximate unit for K.

1.7 Corollary. Let H be a separable Hilbert space and let Q ∈ B(H) be a finite rank
projection. Then, the statement of Corollary 1.6 holds with K = K(H) and the addi-
tional property that each un dominates Q. Furthermore, we may assume that each un
is a finite rank operator.
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Proof. We may choose a countable orthonormal base {ψn} for H such that the first n0

basis vectors constitute a basis for the image of Q. Now, we let {en}n≥n0 be the approx-
imate unit for K(H) which consists of the finite rank projections en which project onto
the span of the first n basis vectors. They satisfy en+1en = en and all the en (n ≥ n0)
dominate Q (hence also convex combinations of them). If we now make our quasicentral
approximate unit {un} as in Corollary 1.6 we see that the un dominate Q and that each
un is a finite rank operator.

2 Quasidiagonality

We first introduce some terminology. A detailed survey can be found in [Bro00]. We
will begin with a quite abstract definition of quasidiagonality. However, there are other
(equivalent) definitions which might be more intuitive at a first glance.

2.1 Definition. We say that A is quasidiagonal (QD) if and only if for every ε > 0
and finite subset F ⊂ A, there exists some n ∈ N and a completely positive contractive
(cpc) map ϕ : A→Mn(C) such that for all a, b ∈ F :[

‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε,
‖ϕ(a)‖ ≥ ‖a‖ − ε

This means that ϕ is almost isometric and multiplicative on F.

2.2 Remark. Indeed, in the above definition we may assume that F ⊂ A≤1. In the
unital case we may also assume that ϕ is unital (ucp). See [BO, Lemma 7.1.4].

2.3 Lemma. Let A be a unital C∗-algebra. Then A is QD if and only if for every
ε > 0 and F ⊂ A≤1 finite there exists a representation π : A→ B(H) and a finite rank
projection P ∈ B(H) such that for all a ∈ F:[

‖π(a)P − Pπ(a)‖ < ε,
‖Pπ(a)P‖ ≥ ‖a‖ − ε

Proof. ⇐=) Let F ⊂ A≤1 finite and ε > 0. Assume that such a representation exists.
Define the cpc map ϕ : A→ PB(H)P by ϕ(a) := Pπ(a)P . Then ϕ is a cpc map. We
check that ϕ has the desired properties: By definition, we have that

‖ϕ(a)‖ ≥ ‖a‖ − ε (a ∈ F).

On the other hand, for a, b ∈ F we get that

‖ϕ(ab)− ϕ(a)ϕ(b)‖ = ‖Pπ(a)π(b)P − Pπ(a)Pπ(b)P‖
≤ ‖Pπ(a)‖

∥∥π(b)P 2 − Pπ(b)P
∥∥

≤ ‖[π(b), P ]‖
< ε.

=⇒) Assume that A is QD and let F ⊂ A≤1 be finite and ε > 0. Since A is QD there
exists a ucp map ϕ : A → Mn(C) such that ϕ is almost isometric and multiplicative
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on the elements of F ∪ F∗. By Stinespring’s Dialation theorem, there exists a unital
representation π : A→ B(H) such that

ϕ(a) = Pπ(a)P (a ∈ A),

where P is a finite rank projection (identify the corner PB(H)P with Mn(C) again).
First, note that for a ∈ F:

ε > ‖ϕ(a)ϕ(a∗)− ϕ(aa∗)‖ = ‖Pπ(a)Pπ(a∗)P − Pπ(a)π(a∗)P‖
= ‖(Pπ(a)(1− P ))(Pπ(a)(1− P ))∗‖
= ‖Pπ(a)(1− P )‖2 .

On the other hand, we have for all a ∈ F:

‖Pπ(a)− π(a)P‖
∥∥Pπ(a)P⊥ − P⊥π(a)P

∥∥
(∗)
≤ max(

∥∥Pπ(a)P⊥
∥∥ ,∥∥Pπ(a∗)P⊥

∥∥)

= max(‖ϕ(a)ϕ(a∗)− ϕ(aa∗)‖ , ‖ϕ(a∗)ϕ(a)− ϕ(a∗a)‖)
< ε.

2.4 Remark. To get the inequality in (∗), one has to note that the following is true in
every C∗-algebra A: If p ∈ A is a projection, then for all a ∈ A the following holds:∥∥pap⊥ + p⊥ap

∥∥ ≤ max(
∥∥pap⊥∥∥ ,∥∥p⊥ap∥∥) = max(

∥∥pap⊥∥∥ ,∥∥pa∗p⊥∥∥).

To see this, note that∥∥pap⊥ + p⊥ap
∥∥2 =

∥∥∥ p⊥a∗pap⊥︸ ︷︷ ︸
x

+ pa∗p⊥ap︸ ︷︷ ︸
y

∥∥∥2.
Since x and y are self-adjoint perpendicular elements they generate a commutative C∗-
algebra. But for functions f, g on a locally compact space we know that fg = 0 implies
that ‖f + g‖∞ ≤ max(‖f‖∞ , ‖g‖∞). Therefore, we get ‖x+ y‖ ≤ max(‖x‖ , ‖y‖).
However,

‖x‖ =
∥∥pap⊥∥∥2

and
‖y‖ =

∥∥p⊥ap∥∥2 =
∥∥pa∗p⊥∥∥2 .

2.5 Definition. Let H be a Hilbert space and Ω ⊂ B(H). We call Ω a quasidiagonal
set of operators if for each finite set F ⊂ Ω, each finite set χ ⊂ H and ε > 0 there
exists a finite rank projection P ∈ B(H) with[

‖Pa− aP‖ < ε (a ∈ Ω),
‖Px− x‖ < ε (x ∈ χ)

2.6 Remark. In fact, the previous definition implies that one may assume Px = x for
all x ∈ χ. See [BO, Prop. 7.2.3].
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2.7 Lemma. Assume Ω ⊂ B(H) is a quasidiagonal set of operators and let F ⊂ Ω
be a finite subset. Let F ∈ B(H) be a finite rank operator such that 0 ≤ F ≤ 1 and
‖Fa− aF‖ < ε for all a ∈ F. Then, there exists a finite rank projection P ∈ B(H)
which dominates F and also commutes up to ε with F.

Proof. Since Ω is a quasidiagonal set of operators we know that there exists a finite
rank projection P ∈ B(H) such that Im(F ) ⊂ Im(P ) (since we can require P to be the
identity on finitely many vectors which form a basis for the image of F ). Furthermore,
we can require that P almost commutes with the elements of F. It remains to check that
P dominates F . By construction we know that PF = F . By computing ‖FP − F‖2
we see that FP = F as well. Since 0 ≤ F ≤ 1 we get 0 ≤ PFP ≤ P 2 = P . Using
PF = FP = F we see that F ≤ P .

2.8 Definition. Let π : A→ B(H) be a ∗-homomorphism. We call π a quasidiagonal
representation if π(A) is a quasidiagonal set of operators.

We say that π is an essential representation if π(A)∩K(H) = {0}. Equivalently
we may require that π(A) ∩ F (H) = {0}, where F (H) denotes the set of finite rank
operators.

2.9 Theorem. Let A be a unital separable C∗-algebra. Then, the following are equiva-
lent:

1. A is QD

2. A has a faithful quasidiagonal representation on a separable Hilbert space

3. Every faithful unital essential representation of A on a separable Hilbert space is
quasidiagonal.

4. Lemma 2.3: For every finite subset F ⊂ A≤1 and ε > 0 there exists a represen-
tation π : A → B(H) and a finite rank projection P ∈ B(H) such that for all
a ∈ F: [

‖π(a)P − Pπ(a)‖ < ε,
‖Pπ(a)P‖ ≥ ‖a‖ − ε

Proof. See [Voi91] Theorem 1.

3 Homotopy invariance of quasidiagonality

3.1 Definition. Let σ0, σ1 : A→ B be ∗-homomorphisms. We say that σ0 and σ1 are
homotopic if there exists a family {σt}t∈(0,1) of ∗-homomorphisms, such that

[0, 1]→ B : t 7→ σt(a)

is continuous for all a ∈ A.
This is equivalent to the existence of a ∗-homomorphism A→ C([0, 1])⊗B with σ0

as left endpoint and σ1 as right endpoint.

3.2 Definition. In these notes we will write A ≤ B if there exist ∗-homomorphisms
π : A → B and σ : B → A such that σ ◦ π ∼h idA. If both A ≤ B and B ≤ A holds,
we say that A and B are homotopy equivalent.
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3.3 Remark. The aim of the rest of the text is to prove the following theorem: If
A ≤ B and B is QD, then A is also QD. Thus, the notion of quasidiagonality has
a strong topological flavor. The following lemma is just another technicality which is
needed for the proof.

3.4 Lemma. Let A be a C∗-algebra, ε > 0 and f ∈ C([0, 1]) with f(0) = 0. Then there
exists a δ > 0 such that for all e, a ∈ A≤1 with e ∈ A+ we have

‖ea− ae‖ < δ ⇒ ‖f(e)a− af(e)‖ < ε.

Proof. See [Arv77].

3.5 Remark. Before we start, we give two more remarks:

(1) If C is separable, then C admits a faithful state. The associated GNS repre-
sentation π : C → B(H) then represents C faithfully on a separable Hilbert
space. To make the representation essential we consider the (still faithful) infla-
tion π∞ : C → B(H∞) : c 7→ (π(c))n∈N where H∞ is the countable direct `2-sum
of copies of H.

(2) If H is some Hilbert space and a ∈ B(H) then, for ε > 0 there is a finite rank
projection Q ∈ B(H) with ‖QaQ‖ ≥ ‖a‖ − ε. To see this, let ψ ∈ H≤1 with
‖aψ‖ ≥ ‖a‖ − ε. By considering the projection onto the subspace spanned by ψ
and aψ we see that ‖QaQψ‖ = ‖aψ‖ ≥ ‖a‖ − ε and therefore, ‖QaQ‖ ≥ ‖a‖ − ε.
Obviously, we can achieve the same result to hold simultaneously for finitely many
operators.

3.6 Theorem ([Voi91]). Let σ0, σ1 : B → C be homotopic ∗-homomorphisms such that
σ0 is injective and σ1(B) is QD. Then B is QD.

Proof. We may assume that B,C are separable and unital. Furthermore, we can require
that the σt are unital for t ∈ [0, 1]. By (1) we may furthermore assume that C is
faithfully and essentially represented on B(K) where K is separable.

In order to prove that B is QD (see Lemma 2.3) , we let F ⊂ B≤1 be finite and
ε > 0. We will show that there exists a representation π : B → B(H) and a finite rank
projection P ∈ B(H) such that for all a ∈ F:[

‖π(a)P − Pπ(a)‖ < ε,
‖Pπ(a)P‖ ≥ ‖a‖ − ε (?)

Let Q ∈ B(K) be a finite rank projection such that

‖Qσ0(b)Q‖ ≥ ‖b‖ − ε (b ∈ F).

By (2) and the fact that σ0 is isometric, such a finite rank projection exists. Now,
choose 0 < δ < ε

10
such that Lemma 3.4 holds with f(t) =

√
t and such that for all

a, e ∈ B(K)≤1 with e ≥ 0:∥∥∥[e, a]
∥∥∥ ≤ 4δ ⇒

∥∥∥[f(e), a]
∥∥∥ ≤ ε

10
(∗)
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Find n ∈ N such that
‖ψj+1(b)− ψj(b)‖ ≤ δ

for j = 0, 1, · · · , n− 1, b ∈ F and ψj = σ j
n
.

Indeed, at this point we can already write down what our representation π will be.
With

H :=
n⊕
j=0

K,

we define
π : B → B(H) : b 7→ (ψj(b))

n
j=0.

However, before we go on we must first do some more work to find the desired projection
P ∈ B(H) which satisfies (?).

We choose positive finite rank operators Q ≤ F1 ≤ F2 ≤ · · · ≤ Fn ≤ 1 such that∥∥∥[Fj, ψj(b)]
∥∥∥ < δ

for j = 0, 1, 2, · · · , n and b ∈ F. The existence of such Fj follows from Corollary 1.7.
To apply the corollary one has to look at the separable C∗-algebra A generated by the
compacts on K together with all elements ψj(b) for j = 0, 1, · · · , n and b ∈ F. The
corollary gives also that Fj+1Fj = Fj.

Since σ1(B) is QD and faithfully, essentially represented on K we know from Theo-
rem 2.9 that σ1(B) is a quasidiagonal set of operators. Therefore we can replace Fn by
a finite rank projection. See Lemma 2.7.

Now, we can define an operator

V : K → H : x 7→ F
1
2
0 (x)⊕ (F1 − F0)

1
2 (x)⊕ · · · ⊕ (Fn − Fn−1)

1
2 (x).

To simplify notation define G0 = F0 and Gj = Fj − Fj−1 for j = 1, 2, · · · , n. Then we
may write

V (x) = (G
1
2
j (x))nj=0.

Now, note that V ∗V = Fn since

〈V ∗V x, y〉 = 〈V x, V y〉 =
n∑
j=0

〈G
1
2
j (x), G

1
2
j (y)〉 =

n∑
j=0

〈Gj(x), y〉 = 〈Fnx, y〉.

The last equality follows by telescoping argument. Since Fn is a projection we see that
V is a partial isometry and hence we get a finite rank projection

P := V V ∗ ∈ B(H).

An important step is now to compute the matrix of P (as an element of Mn+1(B(K))).
To simplify notation we will index such an (n + 1) × (n + 1) matrix by entries (i, j)
where i, j = 0, 1, 2, · · · , n. A short computation shows that

(P )i,j = G
1
2
i G

1
2
j .
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Furthermore, if |i− j| ≥ 2 we see that

(Fi − Fi−1)(Fj − Fj−1) = 0

by using that FjFi = FiFj = Fi if i < j. Therefore, P has a tridiagonal shape:

P =



F0 G
1
2
0G

1
2
1 0 0 · · · 0

G
1
2
1G

1
2
0 G1 G

1
2
1G

1
2
2 0 · · · 0

0 G
1
2
2G

1
2
1 G2 G

1
2
2G

1
2
3 · · · 0

...
...

...
...

. . .
...

0 0 · · · G
1
2
n−1G

1
2
n−2 Gn−1 G

1
2
n−1G

1
2
n

0 0 · · · 0 G
1
2
nG

1
2
n−1 Gn


We will now check that P satisfies (?): Indeed,

‖Pπ(b)P‖ ≥ ‖F0ψ0(b)F0‖ ≥ ‖Qσ0(b)Q‖ ≥ ‖b‖ − ε (b ∈ F).

Here, we use the the norm of of an element in Mn+1(B(K)) is greater than or equal to
the norm of all its matrix entries and (Pπ(b)P )0,0 = F0ψ0(b)F0 ≥ Qσ0(b)Q.

Now, we check that P almost commutes with π(b) for b ∈ F. This requires a few
unpleasant calculations: First, note that∥∥∥[ψj(b), Gj]

∥∥∥ ≤ ∥∥∥[ψj(b), Fj]
∥∥∥+

∥∥∥[ψj(b), Fj−1]
∥∥∥ ≤ 4δ.

By our assumption in (∗) we see that for j = 0, 1, · · · , n:∥∥∥[G
1
2
j , ψj(b)]

∥∥∥ ≤ ε

10
. (∗∗)

We now have to look at the norm of the following elements:

[P, π(b)]i,j = G
1
2
i G

1
2
j ψj(b)− ψi(b)G

1
2
i G

1
2
j .

After adding and subtracting the terms G
1
2
i ψi(b)G

1
2
j and G

1
2
i ψj(b)G

1
2
j we see that

[P, π(b)]i,j = G
1
2
i [G

1
2
j , ψj(b)] + [G

1
2
i , ψi(b)]G

1
2
j +G

1
2
i

(
ψj(b)− ψi(b)

)
G

1
2
j .

Since all the operators G
1
2
i have norm less or equal to one, we see that∥∥∥[P, π(b)]i,j

∥∥∥ ≤ ∥∥∥[G
1
2
j , ψj(b)]

∥∥∥+
∥∥∥[G

1
2
i , ψi(b)]

∥∥∥+ ‖ψj(b)− ψi(b)‖

≤
(

2 sup
j=0,1,··· ,n

∥∥∥[G
1
2
j , ψj(b)]

∥∥∥)+ ‖ψj(b)− ψi(b)‖

(∗∗)
≤ ε

5
+ ‖ψj(b)− ψi(b)‖ .
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Using that [P, π(b)] has again a tridiagonal shape we may compute∥∥∥[P, π(b)]
∥∥∥ ≤ 3 sup

|i−j|≤1

∥∥∥[P, π(b)]i,j

∥∥∥
≤ 3 · ε

5
+ 3 sup

|i−j|≤1
‖ψj(b)− ψi(b)‖

≤ 3ε

5
+ 3δ <

6ε

10
+

3ε

10
< ε.

3.7 Corollary. Assume A ≤ B and B is QD. Then A is QD.

Proof. Let π : A → B and σ : B → A be ∗-homomorphisms such that σ ◦ π ∼h idA.
Define a ∗-homomorphism

η : A→ A⊕ π(A) : a 7→ σ(π(a))⊕ π(a).

Then η ∼h idA⊕π which is injective. Because η(A) ∼= π(A) ⊂ B and B is QD it
follows that η(A) is QD. Now, we may apply the previous theorem to σ0 = idA⊕π and
σ1 = η.

3.8 Remark. An immediate consequence is that every contractible C∗-algebra (and
every subalgebra thereof) is QD. In particular, the cone and suspension of every C∗-
algebra are QD.
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